Mostrar el registro sencillo del ítem

dc.contributor.authorMuñoz Torre, Raúl 
dc.contributor.authorMeier, Leslie
dc.contributor.authorDíaz Villalobos, Israel 
dc.contributor.authorJeison, David
dc.date.accessioned2017-11-06T13:19:31Z
dc.date.available2017-11-06T13:19:31Z
dc.date.issued2015
dc.identifier.citationReviews in Environmental Science and Bio/Technology, 2015, Volume 14, Issue 4, pag.727–759es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/26906
dc.descriptionProducción Científicaes
dc.description.abstractThe lack of tax incentives for biomethane use requires the optimization of both biogas production and upgrading in order to allow the full exploitation of this renewable energy source. The large number of biomethane contaminants present in biogas (CO2, H2S, H2O, N2, O2, methyl siloxanes, halocarbons) has resulted in complex sequences of upgrading processes based on conventional physical/chemical technologies capable of providing CH4 purities of 88–98 % and H2S, halocarbons and methyl siloxane removals >99 %. Unfortunately, the high consumption of energy and chemicals limits nowadays the environmental and economic sustainability of conventional biogas upgrading technologies. In this context, biotechnologies can offer a low cost and environmentally friendly alternative to physical/chemical biogas upgrading. Thus, biotechnologies such as H2-based chemoautrophic CO2 bioconversion to CH4, microalgae-based CO2 fixation, enzymatic CO2 dissolution, fermentative CO2 reduction and digestion with in situ CO2 desorption have consistently shown CO2 removals of 80–100 % and CH4 purities of 88–100 %, while allowing the conversion of CO2 into valuable bio-products and even a simultaneous H2S removal. Likewise, H2S removals >99 % are typically reported in aerobic and anoxic biotrickling filters, algal-bacterial photobioreactors and digesters under microaerophilic conditions. Even, methyl siloxanes and halocarbons are potentially subject to aerobic and anaerobic biodegradation. However, despite these promising results, most biotechnologies still require further optimization and scale-up in order to compete with their physical/chemical counterparts. This review critically presents and discusses the state of the art of biogas upgrading technologies with special emphasis on biotechnologies for CO2, H2S, siloxane and halocarbon removal.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationBiogáses
dc.titleA review on the state-of-the-art of physical/chemical and biological technologies for biogas upgradinges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1007/s11157-015-9379-1es
dc.relation.publisherversionhttps://rd.springer.com/article/10.1007/s11157-015-9379-1es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (Project CTQ2012-34949 and RED NOVEDAR)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA024U14 and GR76)es
dc.description.projectCONICYT-Chile (MEC Program Grant Nº: 80130013 and FONDECYT 1120488)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem