• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/2797

    Título
    Aplicación de técnicas robustas para detección y diagnóstico de fallos
    Autor
    Villegas Berbesi, Thamara
    Director o Tutor
    Fuente Aparicio, María Jesús de laAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2012
    Résumé
    La teoría de control es un área en constante desarrollo, donde muchas técnicas están basadas en el conocimiento del sistema en estudio. A nivel industrial, los sistemas son en su mayoría no lineales, y sus comportamientos ante la influencia del entorno pueden variar en poca o gran medida. Incorporar en el diseño del sistema de control un modulo de detección y diagnóstico de fallos mejora los procesos, la disponibilidad y mantenimiento del sistema, así como su desempeño y robustez. En esta investigación se aplican diferentes métodos de detección y diagnóstico de fallos (DDF) para lograr esquemas que presenten buen desempeño y robustez ante las incertidumbres, perturbaciones y el ruido. Un esquema de DDF que utiliza filtros basado en el modelo matemático del sistema es logrado con la aplicación de desigualdades matriciales lineales (\emph{Linear Matrix Inequalities}, LMIs). Esquemas de DDF que suministran información de las relaciones estadísticas de las señales son desarrollados con técnicas multivariantes de análisis de componentes principales (PCA) y de análisis de componentes independientes (ICA) en aplicaciones estáticas y dinámicas. El conocimiento de los comportamientos del sistema es estudiado mediante redes neuronales dinámicas, que utilizan filtros internos. En el caso en que se utiliza el modelo matemático de la planta se obtiene un esquema de planta generalizada donde se calcula un filtro para rechazar la incertidumbre de la planta, que es modelada por el estudio del comportamiento del sistema en diferentes puntos de operación, y un segundo filtro que es calculado para rechazar las perturbaciones y el ruido. Para los esquemas que utilizan las técnicas multivariantes se construye un banco de modelos que se corresponden con las relaciones estadísticas de las señales en cada uno de los comportamientos definidos del sistema. Cuando se utilizan las redes neuronales dinámicas se establecen patrones de aprendizaje para cada uno de los comportamientos definidos en el sistema, obteniéndose en este caso un banco de redes neuronales, cuyas respuestas
    Materias (normalizadas)
    Sistemas no lineales
    Redes neuronales (Informática)
    Departamento
    Departamento de Ingeniería de Sistemas y Automática
    DOI
    10.35376/10324/2797
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/2797
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2368]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TESIS300-130508.pdf
    Tamaño:
    9.306Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivs 3.0 UnportedExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivs 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10