Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28910
Título
Computing normal forms and formal invariants of dynamical systems by means of word series
Año del Documento
2016
Documento Fuente
Nonlinear Analysis, Volume 138, June 2016, Pages 326-345
Abstract
We show how to use extended word series in the reduction of continuous and discrete dynamical systems to normal form and in the computation of formal invariants of motion in Hamiltonian systems. The manipulations required involve complex numbers rather than vector fields or diffeomorphisms. More precisely we construct a group G¯ and a Lie algebra g¯ in such a way that the elements of G¯ and g¯ are families of complex numbers; the operations to be performed involve the multiplication ★ in G¯ and the bracket of g¯ and result in universal coefficients that are then applied to write the normal form or the invariants of motion of the specific problem under consideration.
ISSN
0362-546X
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad, projects MTM2013-46553-C3-2-P and MTM2013-46553-C3-1-P
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International