Mostrar el registro sencillo del ítem

dc.contributor.authorMurua Uria, Ander
dc.contributor.authorSanz Serna, Jesús María
dc.date.accessioned2018-03-06T22:27:30Z
dc.date.available2018-03-06T22:27:30Z
dc.date.issued2015
dc.identifier.citationProceedings of the 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), Lei Guo and Zhi-Ming eds., Higher Education Press, Beijing, 2015, 311-331es
dc.identifier.isbn978-7-04-043453-8es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/28913
dc.description.abstractThis paper provides a brief history of B-series and the associated Butcher group and presents the new theory of word series and extended word series. B-series (Hairer and Wanner 1976) are formal series of functions parameterized by rooted trees. They greatly simplify the study of Runge-Kutta schemes and other numerical integrators. We examine the problems that led to the introduction of B-series and survey a number of more recent developments, including applications outside numerical mathematics. Word series (series of functions parameterized by words from an alphabet) provide in some cases a very convenient alternative to B-series. Associated with word series is a group G of coe cients with a composition rule simpler than the corresponding rule in the Butcher group. From a more mathematical point of view, integrators, like Runge-Kutta schemes, that are a ne equivariant are represented by elements of the Butcher group, integrators that are equivariant with respect to arbitrary changes of variables are represented by elements of the word group G.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherHigher Education Presses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleFormal series and numerical integrators: some history and some new techniqueses
dc.typeinfo:eu-repo/semantics/bookPartes
dc.description.projectMinisterio de Economía, Industria y Competitividad, proyectos MTM2013-46553-C3-2-P y MTM2013-46553-C3-1-Pes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem