Mostrar el registro sencillo del ítem

dc.contributor.authorOrtega Arranz, Héctor 
dc.contributor.authorTorres de la Sierra, Yuri 
dc.contributor.authorLlanos Ferraris, Diego Rafael 
dc.contributor.authorGonzález Escribano, Arturo 
dc.date.accessioned2018-03-16T19:03:16Z
dc.date.available2018-03-16T19:03:16Z
dc.date.issued2015
dc.identifier.citationInternational Journal of Parallel Programming, Vol. 43, Issue 5 (2015), pages 939-960, ISSN 0885-7458es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/29107
dc.descriptionProducción Científicaes
dc.description.abstractDuring the last decade, parallel processing architectures have become a powerful tool to deal with massively-parallel problems that require High Performance Computing (HPC). The last trend of HPC is the use of heterogeneous environments, that combine different computational processing devices, such as CPU-cores and GPUs (Graphics Processing Units). Maximizing the performance of any GPU parallel implementation of an algorithm requires an in-depth knowledge about the GPU underlying architecture, becoming a tedious manual effort only suited for experienced programmers. In this paper, we present TuCCompi, a multi-layer abstract model that simplifies the programming on heterogeneous systems including hardware accelerators, by hiding the details of synchronization, deployment, and tuning. TuCCompi chooses optimal values for their configuration parameters using a kernel characterization provided by the programmer. This model is very useful to tackle problems characterized by independent, high computational-load independent tasks, such as embarrassingly-parallel problems. We have evaluated TuCCompi in different, real-world, heterogeneous environments using the All-Pair Shortest-Path problem as a case study.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleTuCCompi: a multi-layer model for distributed heterogeneous computing with tuning capabilitieses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderSpringeres
dc.identifier.doi10.1007/s10766-015-0349-6es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10766-015-0349-6es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad and ERDF program of the European Union: CAPAP-H5 network (TIN2014-53522-REDT), MOGECOPP project (TIN2011-25639); Junta de Castilla y Leon (Spain): ATLAS project (VA172A12-2); and the COST Program Action IC1305: NESUS.es
dc.rightsAttribution 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem