• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/29114

    Título
    Trasgo 2.0: Code generation for parallel distributed- and shared-memory hierarchical systems
    Autor
    Moreton Fernández, AnaAutoridad UVA
    González Escribano, ArturoAutoridad UVA Orcid
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    Congreso
    Compilers for Parallel Computing (CPC)
    Año del Documento
    2015
    Editorial
    Universidad de Valladolid, Escuela de Ingeniería Informática
    Descripción
    Producción Científica
    Abstract
    Current multicomputers are typically built as interconnected clusters of shared-memory multicore computers. A common programming approach for these clusters is to simply use a message-passing paradigm, launching as many processes as cores available. Nevertheless, to better exploit the scalability of these clusters and highly-parallel multicore systems, it is needed to efficiently use their distributed- and shared-memory hierarchies. This implies to combine different programming paradigms and tools at different levels of the program design. Programming in this kind of environment is challenging. Many successful parallel programming models and tools have been proposed for specific environments. However, the application programmer still faces many important decisions not related with the parallel algorithms, but with implementation issues that are key for obtaining efficient programs. For example, decisions about partition and locality vs. synchronization/communication costs; grain selection and tiling; proper parallelization strategies for each grain level; or mapping, layout, and scheduling details. Moreover, many of these decisions may change for different machine details or structure, or even with data sizes. This paper presents an automatic code generation system for mixed distributed- and shared-memory parallel multicomputers. We present an extension of the Trasgo programming model. This extended model supports a wider range of parallel structures and applications where coordination is expressed at an abstract level. Transparent modular objects are invoked to guide the partition and mapping of both data and processes, across the whole system. We present a technique that, for affine expressions, compute exact aggregated communications at the distributed level. It uses intersection of remote and local footprints in terms of the mapping policies selected. Moreover, Trasgo 2.0 integrates polyhedral analysis tools to obtain optimizations inside each shared-memory parallel node at the shared level. This approach allows to automatically generate mul- tilevel parallel programs that adapt their communication and synchronization structures to the target machine. Our experimental results for both, shared- and distributed-memory environments, show how this approach can automatically produce efficient codes when compared with manually-optimized codes using MPI or OpenMP models.
    Propietario de los Derechos
    Sus autores
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/29114
    Derechos
    openAccess
    Collections
    • DEP41 - Comunicaciones a congresos, conferencias, etc. [97]
    Show full item record
    Files in this item
    Nombre:
    moreton15a.pdf
    Tamaño:
    66.20Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10