• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/30694

    Título
    Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array
    Autor
    Rodríguez Méndez, María LuzAutoridad UVA Orcid
    Cetó, Xavier
    Valle, Manel del
    Apetrei, Constantin
    Año del Documento
    2014
    Descripción
    Producción Científica
    Documento Fuente
    Electrochimica Acta vol. 120 p. 180-186
    Abstract
    In this work, two sets of voltammetric sensors -prepared using different strategies- have been combined in an electronic tongue to evaluate the complete antioxidant profile of red wines. To this aim, wine samples were analyzed with the whole set of sensors. In order to reduce the large dimensionality of the data set while keeping the relevant information provided by the sensors, two different methods of feature selection and data compression were used (the kernels method and Discrete Wavelet Transform feature extraction method). Then, the coefficients obtained were used as the input variables of Principal Component Analysis (to evaluate the capability of discrimination. Partial-least squares regression (PLS) and artificial neural networks (ANNs) were performer to build the quantitative prediction models that allowed the quantification of the antioxidant capacity of the tested wines.
    ISSN
    0925-4005
    Revisión por pares
    SI
    DOI
    10.1016/j.electacta.2013.12.079
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/30694
    Derechos
    openAccess
    Collections
    • DEP63 - Artículos de revista [223]
    Show full item record
    Files in this item
    Nombre:
    1-s2.0-S001346861302519X-main.pdf
    Tamaño:
    990.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10