• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/30765

    Título
    Classification of non alcoholic beer based on aftertaste sensory evaluation by chemometric tools
    Autor
    Rodríguez Méndez, María LuzAutoridad UVA Orcid
    Ghasemi-Varnamkhasti, Mahdi
    Mohtasebi, S.
    Lozano, J.
    Razavi, S.H.
    Año del Documento
    2012
    Descripción
    Producción Científica
    Documento Fuente
    Expert systems with applications vol.39 p. 4315-4327
    Resumen
    Sensory evaluation is the application of knowledge and skills derived from several different scientific and technical disciplines, physiology, chemistry, mathematics and statistics, human behavior, and knowledge about product preparation practices. This research was aimed to evaluate aftertaste sensory attributes of commercial non-alcoholic beer brands (P1, P2, P3, P4, P5, P6, P7) by several chemometric tools. These attributes were bitter, sour, sweet, fruity, liquorice, artificial, body, intensity and duration. The results showed that the data are in a good consistency. Therefore, the brands were statistically classified in several categories. Linear techniques as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were performed over the data that revealed all types of beer are well separated except a partial overlapping between zones corresponding to P4, P6 and P7. In this research, for the confirmation of the groups observed in PCA and in order to calculate the errors in calibration and in validation, PLS-DA technique was used. Based on the quantitative data of PLS-DA, the classification accuracy values were ranked within 49-86%. Moreover, it was found that the classification accuracy of LDA was much better than PCA. It shows that this trained sensory panel can discriminate among the samples except an overlapping between two types of beer. Also, two types of artificial networks were used: Probabilistic Neural Networks (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Back Propagation (BP) learning method. The highest classification success rate (correct predicted number over total number of measurements) of about 97% was obtained for RBF followed by 94% for BP. The results obtained in this study could be used as a reference for electronic nose and electronic tongue in beer quality control.
    ISSN
    0957-4174
    Revisión por pares
    SI
    DOI
    10.1016/j.eswa.2011.09.101
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/30765
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [322]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1-s2.0-S0957417411014242-main.pdf
    Tamaño:
    1.472Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10