Show simple item record

dc.contributor.authorRodríguez Méndez, María Luz 
dc.contributor.authorGay Martín, Mónica
dc.contributor.authorSaja Sáez, José Antonio de
dc.date.accessioned2018-07-17T09:47:41Z
dc.date.issued2010
dc.identifier.citationLangmuir vol. 26 p. 19217-19224es
dc.identifier.issn0003-2654es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/30779
dc.descriptionProducción Científicaes
dc.description.abstractLutetium bisphthalocyanine (LuPc(2)) nanowires have been successfully obtained by electrophoretic deposition (EPD). The influence of the deposition conditions and annealing in the structure of the films has been studied by AFM, SEM, X-ray diffraction (XRD), UV-vis absorption, and near-infrared (NIR). The electrochemical properties of the EDP films immersed in different electrolytic solutions (KCl, MgCl(2), KClO(4), HCl, and NaOH) indicate that anions diffuse inside the film to maintain the electroneutrality and the kinetics follows the Randles-Sevcik equation. The stability of the response increases strongly upon annealing due to the improvement of the adhesion of the sensitive material to the substrate. The EPD films have been successfully used to detect caffeic acid (an antioxidant of interest in the food industry). The anodic peak associated with the oxidation of caffeic acid appears at 0.54 V and is linearly dependent on the caffeic acid concentration in the 6 × 10(-5) M to 5 × 10(-4) M range with a detection limit of 3.12 × 10(-5) M. The electrochemical behavior of the annealed LuPc(2) EPD films is similar to that observed using Langmuir-Blodgett (LB) nanostructured films. However, the different molecular organization of the molecules inside the film causes differences in the shape and position of the peaks. Although LuPc(2) sensors prepared with both EPD and LB techniques provide stable and reproducible responses, the use of EPD is preferred for real sensing applications because of its lower cost, shorter preparation time, and longer lifetime.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleFilms of lutetium bisphthalocyanine nanowires as electrochemical sensorses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/la1025894es
dc.peerreviewedSIes
dc.description.embargo2022-07-6es
dc.description.lift2022-07-06
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record