Mostrar el registro sencillo del ítem

dc.contributor.authorBote Lorenzo, Miguel Luis 
dc.contributor.authorGómez Sánchez, Eduardo 
dc.date.accessioned2018-09-06T08:47:44Z
dc.date.available2018-09-06T08:47:44Z
dc.date.issued2018
dc.identifier.citationJournal of Universal Computer Science (accepted 2018)es
dc.identifier.issn0948-695Xes
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/31416
dc.descriptionProducción Científicaes
dc.description.abstractThe early detection of learners who are expected to disengage with typical MOOC tasks such as watching lecture videos or submitting assignments is necessary to enable timely interventions aimed at preventing it. This can be done by predicting the decrease of academic engagement indicators that can be derived for di_erent MOOC tasks and computed for each learner. A posteriori prediction models can yield a good performance but cannot be built using the information that is available in an ongoing course at the moment the predictions are required. This paper proposes an approach to build in situ prediction models using such information. Models were derived following both approaches and employed to predict the decrease of three indicators that quantify the engagement of learners with the main tasks typically proposed in a MOOC: watching lectures, solving _nger exercises, and submitting assignments. The results show that in situ models yielded a good performance for the prediction of all engagement indicators, thus showing the feasibility of the proposed approach. This performance was very similar to that of a posteriori models, which have the clear disadvantage that they cannot be used to make predictions in an ongoing course based on its data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherGraz University of Technology, Institut für Informationssysteme und Computer Medienes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationMOOCes
dc.subject.classificationAprendizaje automáticoes
dc.titleAn approach to build in situ models for the prediction of the decrease of academic engagement indicators in Massive Open Online Courseses
dc.typeinfo:eu-repo/semantics/articlees
dc.relation.publisherversionhttp://www.jucs.org/es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (Projects TIN2014-53199-C3-2-R (AEI, FEDER), TIN2017-85179-C3-2-R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA277U14)es
dc.description.projectEuropean Commission (Proyect 588438-EPP-1-2017-1-EL-EPPKA2-KA)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem