• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32889

    Título
    Boundaries of air mass trajectory clustering: key points and applications
    Autor
    Pérez Bartolomé, Isidro AlbertoAutoridad UVA Orcid
    Sánchez Gómez, María LuisaAutoridad UVA Orcid
    García Pérez, María ÁngelesAutoridad UVA
    Pardo Gómez, NuriaAutoridad UVA
    Año del Documento
    2017
    Editorial
    SPRINGER
    Documento Fuente
    Int. J. Environ. Sci. Technol. 14 2017 653–662
    Resumen
    Calculating air mass trajectories is common in atmospheric analyses. However, if explainable results are to be achieved, several procedures are needed to process the vast amount of information handled. Clustering methods are statistical tools usually considered for such a purpose. Although they are based on rigorous algorithms, certain questions still remain when these methods are applied. The current review is organised in sections according to the sequence followed by such procedures. First, the types of clustering methods are described, with their core being the distance used. One key point is the stopping rule, which determines the final number of clusters. A simple classification based on this number is then suggested. Finally, the graphical presentation of the results is examined and the main drawbacks are commented on. A range of applications and results are considered to illustrate each section, and certain caveats and recommendations are also presented.
    ISSN
    1735-1472
    Revisión por pares
    SI
    DOI
    10.1007/s13762-016-1140-y
    Patrocinador
    Ministry of Economy and Competitiveness, Spain and ERDF funds (grant numbers CGL2009-11979 and CGL2014-53948-P)
    Propietario de los Derechos
    SPRINGER
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/32889
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP31 - Artículos de revista [168]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    JEST17.pdf
    Tamaño:
    290.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10