Show simple item record

dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorJuárez Estévez, David
dc.contributor.authorAguado Manzano, Juan Carlos 
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorDurán Barroso, Ramón José 
dc.contributor.authorFernández Reguero, Patricia 
dc.contributor.authorLorenzo Toledo, Rubén Mateo 
dc.contributor.authorAbril Domingo, Evaristo José 
dc.date.accessioned2018-12-17T12:29:02Z
dc.date.available2018-12-17T12:29:02Z
dc.date.issued2017
dc.identifier.citationIEEE/OSA Journal of Optical Communications and Networking, 2017, Volume 9, Issue 5, pp. 433 - 445es
dc.identifier.issn1943-0639es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33487
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, a proportional-integral-derivative (PID) controller integrated with a neural network (NN) is proposed to ensure quality of service (QoS) bandwidth requirements in passive optical networks (PONs). To the best of our knowledge, this is the first time an approach that implements a NN to tune a PID to deal with QoS in PONs is used. In contrast to other tuning techniques such as Ziegler-Nichols or genetic algorithms (GA), our proposal allows a real-time adjustment of the tuning parameters according to the network conditions. Thus, the new algorithm provides an online control of the tuning process unlike the ZN and GA techniques, whose tuning parameters are calculated offline. The algorithm, called neural network service level PID (NNSPID), guarantees minimum bandwidth levels to users depending on their service level agreement, and it is compared with a tuning technique based on genetic algorithms (GASPID). The simulation study demonstrates that NN-SPID continuously adapts the tuning parameters, achieving lower fluctuations than GA-SPID in the allocation process. As a consequence, it provides a more stable response than GA-SPID since it needs to launch the GA to obtain new tuning values. Furthermore, NN-SPID guarantees the minimum bandwidth levels faster than GA-SPID. Finally, NN-SPID is more robust than GA-SPID under real-time changes of the guaranteed bandwidth levels, as GA-SPID shows high fluctuations in the allocated bandwidth, especially just after any change is made.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationRed neuronal (NN)es
dc.subject.classificationRed óptica pasiva (PON)es
dc.subject.classificationNeural network (NN)es
dc.subject.classificationPassive optical network (PON)es
dc.titlePID controller based on a self-adaptive neural network to ensure qos bandwidth requirements in passive optical networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2017 Optical Society of Americaes
dc.identifier.doihttps://doi.org/10.1364/JOCN.9.000433es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/7926828es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (Projects TEC2014-53071-C3-2-P and TEC2015-71932-REDT)es


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record