dc.contributor.author | Johnson, Charles R. | |
dc.contributor.author | Marijuán López, Carlos | |
dc.contributor.author | Pisonero Pérez, Miriam | |
dc.date.accessioned | 2019-05-02T12:45:04Z | |
dc.date.available | 2019-05-02T12:45:04Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Linear and Multilinear Algebra, 2017, vol. 65, n. 7. p. 1417-1426 | es |
dc.identifier.issn | 1563-5139 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/35912 | |
dc.description | Producción Científica | es |
dc.description.abstract | A sufficient condition for symmetric nonnegative realizability of a
spectrum is given in terms of (weak) majorization of a partition of
the negative eigenvalues by a selection of the positive eigenvalues. If
there are more than two positive eigenvalues, an additional condition,
besides majorization, is needed on the partition. This generalizes
observations of Suleˇımanova and Loewy about the cases of one and
two positive eigenvalues, respectively. It may be used to provide
insight into realizability of 5-element spectra and beyond. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Taylor & Francis | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Álgebra | es |
dc.subject | Simetría | es |
dc.title | Symmetric nonnegative realizability via partitioned majorization | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2017 Taylor & Francis | es |
dc.identifier.doi | 10.1080/03081087.2016.1242113 | es |
dc.relation.publisherversion | https://www.tandfonline.com/doi/full/10.1080/03081087.2016.1242113 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (MTM2015-365764-C-1-P / MTM2010- 19281-C03-01) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |