Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/35935
Título
Nash multiplicity sequences and Hironaka's order function
Año del Documento
2018
Editorial
Indiana University Mathematics Journal
Descripción
Producción Científica
Documento Fuente
Indiana University Mathematics Journal, 2018 (in press)
Zusammenfassung
When X is a d-dimensional variety defined over a field k of characteristic zero, a constructive
resolution of singularities can be achieved by successively lowering the maximum multiplicity via blow ups at smooth equimultiple centers. This is done by stratifying the maximum multiplicity locus of X by means of the so called resolution functions. The most important of these functions is what we know as Hironaka’s order function in dimension d. Actually, this function can be defined for varieties when the base field is perfect; however if the characteristic of k is positive, the function is, in general, too coarse and does not provide enough information so as to define a resolution. It is very natural to ask what the meaning of this function is in this case, and to try to find refinements that could lead, ultimately, to a resolution. In this paper we show that Hironaka’s order function in dimension d can be read in terms of the Nash multiplicity sequences introduced by Lejeune-Jalabert. Therefore, the function is intrinsic to the variety and has a geometrical meaning in terms of its space of arcs.
Palabras Clave
Resolución de singularidades
Resolution of Singularities
ISSN
0022-2518
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project MTM2015-68524-P)
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International