Mostrar el registro sencillo del ítem

dc.contributor.authorCabria Álvaro, Iván 
dc.date.accessioned2019-07-09T08:58:00Z
dc.date.available2019-07-09T08:58:00Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Hydrogen Energy, 2019. In Presses
dc.identifier.issn0360-3199es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/36744
dc.descriptionProducción Científicaes
dc.description.abstractSimulations of the hydrogen storage capacities of activated carbons require an accurate treatment of the interaction of a hydrogen molecule physisorbed on the graphitic-like surfaces of nanoporous carbons, which is dominated by the dispersion interactions. These interactions are described accurately by high level quantum chemistry methods such as the Coupled cluster method with single and double excitations and a non-iterative correction for triple excitations (CCSD(T)), but those methods are computationally very expensive for large systems and massive simulations. Density functional theory (DFT) based methods that include dispersion interactions are less accurate, but computationally less expensive. Calculations of the volumetric hydrogen storage capacities of nanoporous carbons, simulated as benzene and graphene slit-shaped pores, have been carried out, using a quantum-thermodynamic model of the physisorption of H2 on surfaces and the interaction potential energy curves of H2 physisorbed on benzene and graphene obtained using the CCSD(T) and second order Møller-Plesset (MP2) methods and the 14 most popular DFT-based methods that include the dispersion interactions at different levels of complexity. The effect of the dispersion interactions on the DFT-based volumetric capacities as a function of the pressure, temperature and pore width is evaluated. The error of the volumetric capacities obtained with the quantum-thermodynamic model and each method is also calculated and analyzed.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationHydrogen storagees
dc.subject.classificationAlmacenamiento de hidrógenoes
dc.subject.classificationPhysisorptiones
dc.subject.classificationFisisorciónes
dc.subject.classificationNanoporous carbonses
dc.subject.classificationCarbones nanoporososes
dc.titleSimulations of volumetric hydrogen storage capacities of nanoporous carbons: Effect of dispersion interactions as a function of pressure, temperature and pore widthes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 Elsevieres
dc.identifier.doihttps://doi.org/10.1016/j.ijhydene.2019.03.071es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0360319919310274es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad ( grant MAT2014-54378-R)es
dc.description.projectJunta de Castilla y León (projects VA050U14 and VA124G18)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem