Mostrar el registro sencillo del ítem
dc.contributor.author | Kant Shankar, Shashi | |
dc.contributor.author | Ruiz Calleja, Adolfo | |
dc.contributor.author | Serrano Iglesias, Sergio | |
dc.contributor.author | Ortega Arranz, Alejandro | |
dc.contributor.author | Topali, Paraskevi | |
dc.contributor.author | Martínez Monés, Alejandra | |
dc.date.accessioned | 2019-10-22T09:49:17Z | |
dc.date.available | 2019-10-22T09:49:17Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Caeiro Rodríguez, M.; Hernández García, A.; Muñoz Merino, P.J. Proceedings of the Learning Analytics Summer Institute (LASI Spain 2019), Vigo, Spain: CEUR, p. 71-83 | es |
dc.identifier.issn | 1613-0073 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/38674 | |
dc.description | Producción Científica | es |
dc.description.abstract | Multimodal Learning Analytics (MMLA) uncovers the possibility to get a more holistic picture of a learning situation than traditional Learning Analytics, by triangulating learning evidence collected from multiple modalities. However, current MMLA solutions are complex and typically tailored to specific learning situations. In order to overcome this problem we are working towards an infrastructure that supports MMLA and can be adapted to different learning situations. As a first step in this direction, this paper analyzes four MMLA scenarios, abstracts their data processing activities and extracts a Data Value Chain to model the processing of multimodal evidence of learning. This helps us to reflect on the requirements needed for an infrastructure to support MMLA. | es |
dc.format.extent | 13 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | CEUR Workshop Proceedings | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Multimodal Learning Analytics | es |
dc.subject.classification | Análisis de aprendizaje multimodal | es |
dc.subject.classification | Data Value Chain | es |
dc.subject.classification | Cadena de valor de datos | es |
dc.subject.classification | Multimodal learning scenarios | es |
dc.subject.classification | Escenarios de aprendizaje multimodal | es |
dc.title | A Data Value Chain to Model the Processing of Multimodal Evidence in Authentic Learning Scenarios | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.relation.publisherversion | http://ceur-ws.org/Vol-2415/ | es |
dc.title.event | Learning Analytics Summer Institute (LASI Spain 2019) | es |
dc.description.project | European Union’s Horizon 2020 research and innovation programme (grant 669074) | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects TIN2017-85179-C3-2-R / TIN2014-53199- C3-2-R) | es |
dc.description.project | Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA257P18) | es |
dc.description.project | Comisión Europea (project 588438-EPP-1-2017-1-EL-EPPKA2- KA) | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/669074 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional