• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39039

    Título
    A multi-device version of the HYFMGPU algorithm for hyperspectral scenes registration
    Autor
    Fernández Fabeiro, JorgeAutoridad UVA Orcid
    Ordóñez, Álvaro
    González Escribano, ArturoAutoridad UVA Orcid
    Blanco Heras, Dora
    Año del Documento
    2019
    Editorial
    The Journal of Supercomputing
    Documento Fuente
    1. A Multi-Device Version of the HYFMGPU Algorithm for Hyperspectral Scenes Registration Jorge Fernández Fabeiro, Álvaro Ordóñez, Arturo González Escribano, Dora Blanco Heras. The Journal of Supercomputing, Springer, ISSN 0920-8542, marzo 2019, vol. 75, issue 3, pp 1551-1564 (Q2), 2018. DOI: 10.1007/s11227-018-2689-7.
    Resumen
    Hyperspectral image registration is a relevant task for real-time applications like environmental disasters management or search and rescue scenarios. Traditional algorithms were not really devoted to real-time performance, even when ported to GPUs or other parallel devices. Thus, the HYFMGPU algorithm arose as a solution to such a lack. Nevertheless, as sensors are expected to evolve and thus generate images with finer resolutions and wider wavelength ranges, a multi-GPU implementation of this algorithm seems to be necessary in a near future. This work presents a multi-device MPI + CUDA implementation of the HYFMGPU algorithm that distributes all its stages among several GPUs. This version has been validated testing it for 5 different real hyperspectral images, with sizes from about 80 MB to nearly 2 GB, achieving speedups for the whole execution of the algorithm from 1.18 × to 1.59 × in 2 GPUs and from 1.26 × to 2.58 × in 4 GPUs. The parallelization efficiencies obtained are stable around 86% and 78% for 2 and 4 GPUs, respectively, which proves the scalability of this multi-device version.
    ISSN
    0920-8542
    Revisión por pares
    SI
    DOI
    10.1007/s11227-018-2689-7
    Patrocinador
    Este trabajo forma parte del proyecto de investigación PCAS Grant TIN2017-88614-R y la Junta de Castilla y León, proyecto PROPHET, VA082P17.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/39039
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [108]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    001-multi-device.pdf
    Tamaño:
    1023.Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10