• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39041

    Título
    Computational and mathematical models meet heterogeneous computing
    Autor
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    Vigo Aguiar, Jesús
    Año del Documento
    2018
    Editorial
    The Journal of Supercomputing
    Documento Fuente
    8. Computational and mathematical models meet heterogeneous computing (Editorial, CMMSE Special Issue). Diego R. Llanos, Jesus Vigo-Aguiar. The Journal of Supercomputing (Q2), Springer, ISSN 0920-8542, DOI 10.1007/s11227-018-2713-y.
    Resumen
    During the first decade of the twenty-first century, the advent of multicore processing reached its maturity level, with the help of shared-memory programming models such as OpenMP [1], that allows to parallelize both legacy and new C and Fortran applications in a shared-memory environments. Meanwhile, message-passing programming models such as MPI [2] allowed to aggregate multicore systems in larger clusters, which dominated the TOP 500 supercomputing list [3]. However, at that time parallel computing seemed to face some limits that were hard to overcome. Physical limits prevented clock frequencies to increase, and the Law of Diminishing Returns reduced the usefulness of keep adding cores to a multiprocessor. Suddenly, the advent of GPU computing changed the game once again. Being initially developed as a way to accelerate graphical processing, GPUs were reused to speed up certain types of calculations that needed a similar processing to an entire set of independent elements. CUDA [4] programming model allowed programmers to translate to the GPU world many applications, and the TOP 500 list started to show more and more heterogeneous systems that incorporated accelerators to their cluster nodes.
    ISSN
    0920-8542
    Revisión por pares
    SI
    DOI
    10.1007/s11227-018-2713-y
    Patrocinador
    Este trabajo forma parte del proyecto de investigación PCAS Grant TIN2017-88614-R y la Junta de Castilla y León, proyecto PROPHET, VA082P17.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/39041
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [108]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    008-computational-and-mathematical.pdf
    Tamaño:
    282.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10