Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39041
Título
Computational and mathematical models meet heterogeneous computing
Año del Documento
2018
Editorial
The Journal of Supercomputing
Documento Fuente
8. Computational and mathematical models meet heterogeneous computing (Editorial, CMMSE Special Issue). Diego R. Llanos, Jesus Vigo-Aguiar. The Journal of Supercomputing (Q2), Springer, ISSN 0920-8542, DOI 10.1007/s11227-018-2713-y.
Resumo
During the first decade of the twenty-first century, the advent of multicore processing reached its maturity level, with the help of shared-memory programming models such as OpenMP [1], that allows to parallelize both legacy and new C and Fortran applications in a shared-memory environments. Meanwhile, message-passing programming models such as MPI [2] allowed to aggregate multicore systems in larger clusters, which dominated the TOP 500 supercomputing list [3]. However, at that time parallel computing seemed to face some limits that were hard to overcome. Physical limits prevented clock frequencies to increase, and the Law of Diminishing Returns reduced the usefulness of keep adding cores to a multiprocessor. Suddenly, the advent of GPU computing changed the game once again. Being initially developed as a way to accelerate graphical processing, GPUs were reused to speed up certain types of calculations that needed a similar processing to an entire set of independent elements. CUDA [4] programming model allowed programmers to translate to the GPU world many applications, and the TOP 500 list started to show more and more heterogeneous systems that incorporated accelerators to their cluster nodes.
ISSN
0920-8542
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación PCAS Grant TIN2017-88614-R y la Junta de Castilla y León, proyecto PROPHET, VA082P17.
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item