Mostrar el registro sencillo del ítem

dc.contributor.authorLlamazares Rodríguez, Bonifacio 
dc.date.accessioned2020-01-09T12:24:05Z
dc.date.available2020-01-09T12:24:05Z
dc.date.issued2020
dc.identifier.citationIEEE Transactions on Fuzzy Systems, 2020, en prensa.es
dc.identifier.issn1063-6706es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40056
dc.descriptionProducción Científicaes
dc.description.abstractWeighted means and OWA operators are two families of functions well known in the literature. Given that both are specific cases of the Choquet integral, several procedures for constructing capacities that generalize simultaneously those of the weighted means and the OWA operators have been suggested in recent years. In this paper we propose two methods that allow us to address the previous issue and that provide us with a wide variety of capacities when the weighting vector associated with the OWA operator is unimodal.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationWeighted means, OWA operators, unimodal weighting vectors, SUOWA operators, Semi-SUOWA operators, the Crescent Method, Choquet integral.es
dc.titleGeneralizations of weighted means and OWA operators by using unimodal weighting vectorses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderIEEEes
dc.identifier.doi10.1109/TFUZZ.2019.2928513es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8762230es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationlastpage1es
dc.identifier.publicationtitleIEEE Transactions on Fuzzy Systemses
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: MEC-FEDER Grant ECO2016-77900-P.es
dc.identifier.essn1941-0034es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem