• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40143

    Título
    Squares of matrix-product codes
    Autor
    Cascudo, Ignacio
    Gundersen, Jaron Skovsted
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2020
    Documento Fuente
    I. Cascudo, J.S. Gundersen, D. Ruano: Squares of Matrix-product Codes. Finite Fields and their Applications. Volume 62, 101606 (2020)
    Abstract
    The component-wise or Schur product $C*C'$ of two linear error-correcting codes $C$ and $C'$ over certain finite field is the linear code spanned by all component-wise products of a codeword in $C$ with a codeword in $C'$. When $C=C'$, we call the product the square of $C$ and denote it $C^{*2}$. Motivated by several applications of squares of linear codes in the area of cryptography, in this paper we study squares of so-called matrix-product codes, a general construction that allows to obtain new longer codes from several ``constituent'' codes. We show that in many cases we can relate the square of a matrix-product code to the squares and products of their constituent codes, which allow us to give bounds or even determine its minimum distance. We consider the well-known $(u,u+v)$-construction, or Plotkin sum (which is a special case of a matrix-product code) and determine which parameters we can obtain when the constituent codes are certain cyclic codes. In addition, we use the same techniques to study the squares of other matrix-product codes, for example when the defining matrix is Vandermonde (where the minimum distance is in a certain sense maximal with respect to matrix-product codes).
    ISSN
    1071-5797
    Revisión por pares
    SI
    DOI
    10.1016/j.ffa.2019.101606
    Patrocinador
    This work is supported by the Danish Council for IndependentResearch: grant DFF-4002-00367, theSpanish Ministry of Economy/FEDER: grant RYC-2016-20208 (AEI/FSE/UE), the Spanish Ministry of Science/FEDER: grant PGC2018-096446-B-C21, and Junta de CyL (Spain): grant VA166G1
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1071579719301091?via%3Dihub
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40143
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • DEP96 - Artículos de revista [47]
    Show full item record
    Files in this item
    Nombre:
    FFA2020eprint.pdf
    Tamaño:
    512.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10