Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40807
Título
On graph combinatorics to improve eigenvector-based measures of centrality in directed networks
Año del Documento
2016
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Linear Algebra and its Applications, 2016, vol. 504. p. 325-353
Abstract
We present a combinatorial study on the rearrangement of links in the structure of directed networks for the purpose of improving the valuation of a vertex or group of vertices as established by an eigenvector-based centrality measure. We build our topological classification starting from unidirectional rooted trees and up to more complex hierarchical structures such as acyclic digraphs, bidirectional and cyclical rooted trees (obtained by closing cycles on unidirectional trees). We analyze different modifications on the structure of these networks and study their effect on the valuation given by the eigenvector-based scoring functions, with particular focus on α-centrality and PageRank.
Palabras Clave
Centrality
Centralidad
Eigenvector
Vector propio
Topology
Topología
Network
Red informática
ISSN
0024-3795
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (project TIN2014-57226-P)
Generalitat de Catalunya (project SGR2014- 890)
Ministerio de Ciencia, Innovación y Universidades (project MTM2012-36917-C03-01)
Generalitat de Catalunya (project SGR2014- 890)
Ministerio de Ciencia, Innovación y Universidades (project MTM2012-36917-C03-01)
Version del Editor
Propietario de los Derechos
© 2016 Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional