Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorRivera García, Diego
dc.contributor.authorMayo Iscar, Agustín 
dc.contributor.authorOrtega, Joaquín
dc.date.accessioned2020-09-24T09:53:08Z
dc.date.available2020-09-24T09:53:08Z
dc.date.issued2020
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/42508
dc.description.abstractIn this work, we propose a robust Cluster Analysis methodology based on cell trimming as an extension to a recently introduced robust version of Principal Component Analysis. This new approach allows for cellwise trimming in cluster analysis, which is more reasonable than traditional casewise trimming when the problem's dimension is large. This type of trimming avoids an unnecessary loss of information when only a few cells of the entirely trimmed observations are atypical. An algorithm is proposed to apply this approach. This algorithm is particularized to the interesting case of functional cluster analysis. Simulations and applications to real data sets are given to illustrate the proposed methods.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleCluster analysis with cellwise trimming and applications to robust clustering of curveses
dc.typeinfo:eu-repo/semantics/workingPaperes
dc.description.projectThis research was partially supported by Spanish Ministerio de Economía y Competitividad, Grant MTM2017- 86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grant VA005P17 and VA002G18.es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem