Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/42583
Título
Tumor cell load and heterogeneity estimation from diffusion-weighted MRI calibrated with histological data: an example from lung cancer
Autor
Año del Documento
2018
Editorial
Institute of Electrical and Electronics Engineers
Descripción
Producción Científica
Documento Fuente
IEEE Transactions on Medical Imaging, 2018, vol. 37, n. 1 p. 35-46
Resumen
Diffusion-weighted magnetic resonance imaging (DWI) is a key non-invasive imaging technique for cancer diagnosis and tumor treatment assessment, reflecting Brownian movement of water molecules in tissues. Since densely packed cells restrict molecule mobility, tumor tissues produce usually higher signal (a.k.a. less attenuated signal) on isotropic maps compared with normal tissues. However, no general quantitative relation between DWI data and the cell density has been established. In order to link low-resolution clinical cross-sectional data with high-resolution histological information, we developed an image processing and analysis chain, which was used to study the correlation between the diffusion coefficient (D value) estimated from DWI and tumor cellularity from serial histological slides of a resected non-small cell lung cancer tumor. Color deconvolution followed by cell nuclei segmentation was performed on digitized histological images to determine local and cell-type specific 2d (two-dimensional) densities. From these, the 3d cell density was inferred by a model-based sampling technique, which is necessary for the calculation of local and global 3d tumor cell count. Next, DWI sequence information was overlaid with high-resolution CT data and the resected histology using prominent anatomical hallmarks for co-registration of histology tissue blocks and non-invasive imaging modalities' data. The integration of cell numbers information and DWI data derived from different tumor areas revealed a clear negative correlation between cell density and D value. Importantly, spatial tumor cell density can be calculated based on DWI data. In summary, our results demonstrate that tumor cell count and heterogeneity can be predicted from DWI data, which may open new opportunities for personalized diagnosis and therapy optimization.
Materias Unesco
3205 Medicina Interna
3207.13 Oncología
Palabras Clave
Cancer
DWI
Histopatología
Heterogeneidad
ISSN
0278-0062
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© IEEE
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional