• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/42628

    Título
    Depth-dependent dynamics of liquid metal surfaces with first principles simulations
    Autor
    G. del Río, Beatriz
    González Tesedo, Luis EnriqueAutoridad UVA
    Año del Documento
    2020
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Acta Materialia Volume 198, 1 October 2020, Pages 281-289
    Resumen
    Liquid metal surfaces have gained increased interest over the last decade due to new applications in synthesis of 2D materials, catalysis, or fusion reactors. Static properties such as the reflectivity and density profile have been determined, both experimentally and computationally, for numerous liquid metals and alloys. However, the characterization of the dynamic properties has remained a challenging task and only one experimental study by Reichert et al. has evaluated the depth-dependence of different dynamic properties in the liquid indium (l-In) surface. In this paper, we present an ab inito molecular dynamics study of the collective dynamic properties of this same system at different depths, obtaining very good agreement with the experimental data. In addition, we are able to compute the properties much closer to the surface than experimentally attainable, and have discovered that at these shallower depths, the properties drastically differ from those deeper in the slab. Therefore, this study sheds light into the behavior of dynamic properties at the atomic interface and highlights the ability of ab initio molecular dynamics to study such unknown dynamic behavior of liquid metals surfaces at depths not yet attainable experimentally but of crucial importance for liquid surface physics.
    Materias Unesco
    22 Física
    ISSN
    1359-6454
    Revisión por pares
    SI
    DOI
    10.1016/j.actamat.2020.07.071
    Patrocinador
    Junta de Castilla y León (Ref. project VA124G18)
    Ministerio de Economía, Industria y Competitividad (Project PGC2018-093745-B-I00) and FEDER
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1359645420305917
    Propietario de los Derechos
    © 2020 Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/42628
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • PNM - Artículos de revistas [30]
    • DEP33 - Artículos de revista [197]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    ActaMat_196_291_autor.pdf
    Tamaño:
    2.479Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10