Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43277
Título
Evaluación de algoritmos de detección de objetos basados en deep learning para detección de incidencias en carreteras
Director o Tutor
Año del Documento
2020
Titulación
Grado en Ingeniería de Tecnologías de Telecomunicación
Resumen
La detección de objetos es una capacidad muy útil para el desarrollo de nuevas aplicaciones de visión artificial, en diferentes ámbitos de la vida cotidiana, en concreto, es especialmente útil en el campo de la conducción asistida. Sin embargo, los requisitos computacionales que requieren suelen ser limitantes a la hora de implementarlos en un sistema embebido. Conocer el rendimiento de los diferentes modelos de detección dentro de un sistema concreto es de gran utilidad a la hora de tomar decisiones de diseño. El objetivo de este trabajo es diseñar mediante la programación en Python haciendo uso de Tensorflow, un sistema capaz de detectar y rastrear elementos en un entorno de trabajo centrado en la automoción. Para ello se plantea el estudio del rendimiento de diferentes modelos de detección de objetos para determinar cuál es el que se adapta mejor a nuestros sistemas, así como el entrenamiento en una base de datos específica de automoción “Berkeley Deep Dive 100k” (BDD100k). El programa de detección y seguimiento se ha creado de tal forma que sea sencillo cambiar de un detector de objetos a otro si los requisitos cambiaran. Object detection is a very useful ability for the development of new applications of artificial vision, in different areas of everyday life, specifically, it is especially useful in the field of assisted driving. However, the computational requirements they require are often limiting when implementing them in an embedded system. Knowing the performance of different detection models within a specific system is very useful when making design decisions. The objective of this work is to design through programming in Python using Tensorflow, a system capable of detecting and tracking elements in an automotive-focused work environment. For this, the study of the performance of different object detection models is proposed to determine which one best suits our systems, as well as training in a specific automotive database "Berkeley Deep Dive 100k" (BDD100k). The detection and monitoring program has been created in such a way that it is easy to change from one object detector to another if the requirements change.
Palabras Clave
Aprendizaje profundo
Rastreo
Detección de objetos
Idioma
spa
Derechos
openAccess
Aparece en las colecciones
- Trabajos Fin de Grado UVa [30339]
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional