• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43604

    Título
    Identifying users from the interaction with a door handle
    Autor
    Vegas Hernández, Jesús MaríaAutoridad UVA Orcid
    Llamas Bello, CésarAutoridad UVA Orcid
    González Delgado, Manuel ÁngelAutoridad UVA Orcid
    Hernández Díez, María CarmenAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    Elsevier
    Documento Fuente
    Pervasive and Mobile Computing S1574-1192(20)30128-0
    Resumo
    Ambient intelligence pursues the integration of intelligent approaches on an IoT infrastructure, mainly using everyday objects of the environment. The main hypothesis of the work is that the way in which a user interacts with a door handle is suitable to be used in the identification task. Our proposal contributes with a new method to identify persons in a seamless and un-obstrusive way, suitable to be used in a smart building scenery without the need to bring any additional device. In this case, we embed accelerometers and gyroscopes in a door handle in order to obtain a data set comprising samples of 47 individuals. A parametric approximation is adopted to reduce each sample to a feature vector by using a dynamic time warping technique. A study has been made of the outcomes of different classification techniques over six different feature sets in order to assess the feasibility of this identification challenge. The AUC values observed with the selected feature set show promising results above 0.90 using neural networks and SVM classifiers.
    Palabras Clave
    Ambient Intelligence
    User Identification
    IoT
    Sensors
    Pattern Matching
    Access Control
    Revisión por pares
    SI
    DOI
    10.1016/j.pmcj.2020.101293
    Version del Editor
    https://reader.elsevier.com/reader/sd/pii/S1574119220301280?token=B49F9DA9C46EE6FB2AC7FC709A041290D753A4D9259C2E50C9A95E67C6B0ED2D360DDE1837DDFCE1595D1BB7BF74D99F
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/43604
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP31 - Artículos de revista [166]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    1-s2.0-S1574119220301280-main.pdf
    Tamaño:
    1.603Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10