dc.contributor.author | Larriba González, Yolanda | |
dc.contributor.author | Rueda Sabater, María Cristina | |
dc.contributor.author | Fernández Temprano, Miguel Alejandro | |
dc.contributor.author | Peddada, Shyamal | |
dc.date.accessioned | 2021-02-21T09:11:28Z | |
dc.date.available | 2021-02-21T09:11:28Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Statistics In Medicine, 2019, vol. 39, n. 3, p. 265-278. | es |
dc.identifier.issn | 0277-6715 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45326 | |
dc.description | Producción Científica | |
dc.description.abstract | This paper is motivated by applications in oscillatory systems where researchers are typically interested in discovering components of those systems that display rhythmic temporal patterns. The contributions of the paper are twofold. First, a methodology is developed based on a circular signal plus error model that is de ned using order restrictions. This mathematical formulation of rhythmicity is simple, easily interpretable and very flexible, with the latter property derived from the non-parametric formulation of the signal. Second, we address various commonly encountered problems in the analysis of oscillatory systems data. Speci cally, we propose a methodology for (a) detecting rhythmic signals in an oscillatory system, (b) estimating the unknown sampling time which occurs when tissues are obtained from subjects whose time of death is unknown. The proposed methodology is computationally efficient, outperforms the existing methods and is broadly applicable to address a wide range of questions related to oscillatory systems. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.classification | circular data | |
dc.subject.classification | constrained inference | |
dc.subject.classification | oscillatory systems | |
dc.subject.classification | rhythmicity detection | |
dc.subject.classification | temporal order estimation | |
dc.title | Order restricted inference in chronobiology | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 John Wiley & Sons, Ltd. | es |
dc.identifier.doi | 10.1002/sim.8397 | es |
dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8397 | es |
dc.identifier.publicationfirstpage | 265 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationlastpage | 278 | es |
dc.identifier.publicationtitle | Statistics in Medicine | es |
dc.identifier.publicationvolume | 39 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía y Competitividad (MTM2015-71217-R) | |
dc.description.project | Ministerio de Educación, Cultura y Deporte (FPU14/04534) | |
dc.identifier.essn | 1097-0258 | es |
dc.rights | Atribución-NoComercial-SinDerivados 4.0 Internacional | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |