Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45599
Título
Decentralized and Dynamic Fault Detection Using PCA and Bayesian Inference
Congreso
23th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2018
Año del Documento
2018
Editorial
IEEE
Descripción Física
8p
Descripción
Producción Científica
Documento Fuente
23th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA’2018, Turin, Italia, 2018, p. 800-807
Resumo
This paper proposes a dynamic and decentralized fault detection method. The plant is divided in groups whose members are selected using linear and non-linear modelling techniques. In each group a Principal Component Analysis model does the fault detection, including delayed data to get a dynamic
method. Then, a central node fuses the results of each group, using Bayesian Index Criterion (BIC), to get a global detection outcome. The method was tested on a widely used benchmark and compared with other proposal to check its effectiveness.
Palabras Clave
Fault detection
Dynamic principal component analysis
Decentralized process monitoring
Decision fusion
ISBN
978-1-5386-7107-8
Patrocinador
Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
Version del Editor
Propietario de los Derechos
IEEE
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item