Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45882
Título
The formation of urea in space: I. Ion-molecule, neutral-neutral, and radical gas-phase reactions
Año del Documento
2018
Editorial
EDP Sciences
Descripción
Producción Científica
Documento Fuente
Astronomy & Astrophysics, 2018, vol. 610. 15 p.
Resumen
Context: Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N–C–O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C–O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation.
Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways.
Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products.
Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.
Palabras Clave
Astrochemistry
Astroquímica
Astrobiology methods
Métodos astrobiológicos
Interstellar medium
Medio interestelar
ISSN
1432-0746
Revisión por pares
SI
Patrocinador
ANR DynBioReact (grant ANR-14-CE06-0029-01)
Centre National de la Recherche Scientifique (project ASTROCOL)
Centre National de la Recherche Scientifique (project ASTROCOL)
Propietario de los Derechos
© 2018 EDP Sciences
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional