• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45998

    Título
    High dimensional affine codes whose square has a designed minimum distance
    Autor
    García Marco, Ignacio
    Marquez Corbella, IreneAutoridad UVA Orcid
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    I. García-Marco, Irene Márquez-Corbella, Diego Ruano: High dimensional affine codes whose square has a designed minimum distance. Designs, Codes and Cryptography. Volume 88, pages 1653-1672 (2020)
    Abstract
    Given a linear code C, its square code C(2) is the span of all component-wise products of two elements of C. Motivated by applications in multi-party computation, our purpose with this work is to answer the following question: which families of affine variety codes have simultaneously high dimension k(C) and high minimum distance of C(2), d(C(2))? More precisely, given a designed minimum distance d we compute an affine variety code C such that d(C(2))≥d and the dimension of C is high. The best constructions we propose mostly come from hyperbolic codes. Nevertheless, for small values of d, they come from weighted Reed–Muller codes
    ISSN
    0925-1022
    Revisión por pares
    SI
    DOI
    10.1007/s10623-020-00764-5
    Patrocinador
    Partially supported by the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-1-P, MTM2015-65764-C3-2-P, MTM2015-69138-REDT, MTM2016-78881-P, MTM2016-80659-P, and RYC-2016-20208 (AEI/FSE/UE), and Junta de CyL (Spain): grant VA166G18.
    Version del Editor
    https://doi.org/10.1007/s10623-020-00764-5
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45998
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • IMUVA - Artículos de Revista [104]
    Show full item record
    Files in this item
    Nombre:
    DCC2020eprint.pdf
    Tamaño:
    1.248Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10