Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45998
Título
High dimensional affine codes whose square has a designed minimum distance
Año del Documento
2020
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
I. García-Marco, Irene Márquez-Corbella, Diego Ruano: High dimensional affine codes whose square has a designed minimum distance. Designs, Codes and Cryptography. Volume 88, pages 1653-1672 (2020)
Abstract
Given a linear code C, its square code C(2) is the span of all component-wise products of two elements of C. Motivated by applications in multi-party computation, our purpose with this work is to answer the following question: which families of affine variety codes have simultaneously high dimension k(C) and high minimum distance of C(2), d(C(2))? More precisely, given a designed minimum distance d we compute an affine variety code C such that d(C(2))≥d and the dimension of C is high. The best constructions we propose mostly come from hyperbolic codes. Nevertheless, for small values of d, they come from weighted Reed–Muller codes
ISSN
0925-1022
Revisión por pares
SI
Patrocinador
Partially supported by the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-1-P, MTM2015-65764-C3-2-P, MTM2015-69138-REDT, MTM2016-78881-P, MTM2016-80659-P, and RYC-2016-20208 (AEI/FSE/UE), and Junta de CyL (Spain): grant VA166G18.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional