• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/46440

    Título
    Effective reorganization and self-indexing of big semantic data
    Autor
    Hernández Illera, Antonio
    Director o Tutor
    Martínez Prieto, Miguel AngelAutoridad UVA
    Fernández García, Javier David
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingeniería InformáticaAutoridad UVA
    Año del Documento
    2021
    Titulación
    Doctorado en Informática
    Abstract
    En esta tesis hemos analizado la redundancia estructural que los grafos RDF poseen y propuesto una técnica de preprocesamiento: RDF-Tr, que agrupa, reorganiza y recodifica los triples, tratando dos fuentes de redundancia estructural subyacentes a la naturaleza del esquema RDF. Hemos integrado RDF-Tr en HDT y k2-triples, reduciendo el tamaño que obtienen los compresores originales, superando a las técnicas más prominentes del estado del arte. Hemos denominado HDT++ y k2-triples++ al resultado de aplicar RDF-Tr en cada compresor. En el ámbito de la compresión RDF se utilizan estructuras compactas para construir autoíndices RDF, que proporcionan acceso eficiente a los datos sin descomprimirlos. HDT-FoQ es utilizado para publicar y consumir grandes colecciones de datos RDF. Hemos extendido HDT++, llamándolo iHDT++, para resolver patrones SPARQL, consumiendo menos memoria que HDT-FoQ, a la vez que acelera la resolución de la mayoría de las consultas, mejorando la relación espacio-tiempo del resto de autoíndices.
    Materias (normalizadas)
    Compresión RDF
    SPARQL
    Materias Unesco
    33 Ciencias Tecnológicas
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    DOI
    10.35376/10324/46440
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/46440
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • Tesis doctorales UVa [1989]
    Show full item record
    Files in this item
    Nombre:
    TESIS-1807-210427.pdf
    Tamaño:
    9.878Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10