Mostrar el registro sencillo del ítem
dc.contributor.author | Nieto Calzada, Luis Miguel | |
dc.contributor.author | Ancarani, Lorenzo Ugo | |
dc.contributor.author | Bencheikh, Kamel | |
dc.date.accessioned | 2021-08-30T08:33:15Z | |
dc.date.available | 2021-08-30T08:33:15Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | The European Physical Journal Plus, 2021, vol. 136, n. 7, art. 721 | es |
dc.identifier.issn | 2190-5444 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/48198 | |
dc.description | Producción Científica | es |
dc.description.abstract | For a harmonically trapped system consisting of two bosons in one spatial dimension with infinite contact repulsion (hard core bosons), we derive an expression for the onebody density matrix ρB in terms of center of mass and relative coordinates of the particles. The deviation from ρF, the density matrix for the two fermions case, can be clearly identified. Moreover, the obtained ρB allows us to derive a closed form expression of the corresponding momentum distribution nB(p). We show how the result deviates from the noninteracting fermionic case, the deviation being associated with the short-range character of the interaction. Mathematically, our analytical momentum distribution is expressed in terms of one and two variables confluent hypergeometric functions. Our formula satisfies the correct normalization and possesses the expected behavior at zero momentum. It also exhibits the high momentum 1/p4 tail with the appropriate Tan’s coefficient. Numerical results support our findings. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Bosones | es |
dc.subject.classification | Fermión | es |
dc.subject.classification | Bosons | es |
dc.subject.classification | Fermions | es |
dc.title | The momentum distribution of two bosons in one dimension with infinite contact repulsion in harmonic trap gets analytical | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 The Authors | es |
dc.identifier.doi | 10.1140/epjp/s13360-021-01671-x | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1140/epjp/s13360-021-01671-x | es |
dc.identifier.publicationissue | 7 | es |
dc.identifier.publicationtitle | The European Physical Journal Plus | es |
dc.identifier.publicationvolume | 136 | es |
dc.peerreviewed | SI | es |
dc.description.project | Junta de Castilla y León y FEDER (proyecto BU229P18) | es |
dc.identifier.essn | 2190-5444 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 22 Física | es |
dc.subject.unesco | 12 Matemáticas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional