Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Ramos, Raúl | |
dc.contributor.author | Duque Domingo, Jaime | |
dc.contributor.author | Zalama Casanova, Eduardo | |
dc.contributor.author | Gómez García-Bermejo, Jaime | |
dc.date.accessioned | 2021-09-02T08:23:25Z | |
dc.date.available | 2021-09-02T08:23:25Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Sensors, 2021, vol. 21, n. 16, 5270 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/48475 | |
dc.description | Producción Científica | es |
dc.description.abstract | In recent years, Artificial Intelligence Technologies (AIT) have been developed to improve the quality of life of the elderly and their safety in the home. This work focuses on developing a system capable of recognising the most usual activities in the daily life of an elderly person in real-time to enable a specialist to monitor the habits of this person, such as taking medication or eating the correct meals of the day. To this end, a prediction model has been developed based on recurrent neural networks, specifically on bidirectional LSTM networks, to obtain in real-time the activity being carried out by the individuals in their homes, based on the information provided by a set of different sensors installed at each person’s home. The prediction model developed in this paper provides a 95.42% accuracy rate, improving the results of similar models currently in use. In order to obtain a reliable model with a high accuracy rate, a series of processing and filtering processes have been carried out on the data, such as a method based on a sliding window or a stacking and re-ordering algorithm, that are subsequently used to train the neural network, obtained from the public database CASAS. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Recurrent neural networks | es |
dc.subject.classification | Redes neuronales recurrentes | es |
dc.subject.classification | Non-intrusive sensors | es |
dc.subject.classification | Sensores no intrusivos | es |
dc.subject.classification | Smart homes | es |
dc.subject.classification | Hogares inteligentes | es |
dc.title | Daily human activity recognition using non-intrusive sensors | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 The Authors | es |
dc.identifier.doi | 10.3390/s21165270 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/21/16/5270 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades (project RTI2018-096652-B-I00) | es |
dc.description.project | Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA233P18) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional