Mostrar el registro sencillo del ítem
dc.contributor.advisor | Muñoz Castañeda, José María | es |
dc.contributor.advisor | Santamaría Sanz, Lucía | es |
dc.contributor.author | García Fonseca, Alberto | |
dc.contributor.editor | Universidad de Valladolid. Facultad de Ciencias | es |
dc.date.accessioned | 2021-11-30T09:10:27Z | |
dc.date.available | 2021-11-30T09:10:27Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/50695 | |
dc.description.abstract | The aim of this Degree Thesis is to prove the existence of an infinite vaccum energy due to quantum fluctuations and how to get a finite result while applying some boundary conditions. First of all, scalar field will be quantized in order to show it can be seen as a set of harmonic oscillators, which may all be in ground state, contribuying to a zero-point energy that diverges. In order to get a finite result by units of area, it will be used a classical and a zeta regularization for Dirichlet boundary conditions, the ones that Casimir originally used. That gives a discret spectrum that can be computed analitically. In the final part, a zeta regularization will be used for Robin boundary conditions, where it will be necessary to use numerical methods to get the spectrum. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Teoría Cuántica | es |
dc.subject.classification | Campos | es |
dc.subject.classification | Efecto Casimir | es |
dc.title | Aplicaciones de la variable compleja a la teoría cuántica de campos: regularización por funciones zeta y efecto Casimir | es |
dc.type | info:eu-repo/semantics/bachelorThesis | es |
dc.description.degree | Grado en Física | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Trabajos Fin de Grado UVa [30865]
