Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.contributor.authorRiani, Marco
dc.date.accessioned2021-12-20T10:58:44Z
dc.date.available2021-12-20T10:58:44Z
dc.date.issued2021
dc.identifier.citationStatistics and Computing, 2021, vol. 32, n. 1.es
dc.identifier.issn0960-3174es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/50994
dc.descriptionProducción Científicaes
dc.description.abstractA new methodology for constrained parsimonious model-based clustering is introduced, where some tuning parameter allows to control the strength of these constraints. The methodology includes the 14 parsimonious models that are often applied in model-based clustering when assuming normal components as limit cases. This is done in a natural way by filling the gap among models and providing a smooth transition among them. The methodology provides mathematically well-defined problems and is also useful to prevent us from obtaining spurious solutions. Novel information criteria are proposed to help the user in choosing parameters. The interest of the proposed methodology is illustrated through simulation studies and a real-data application on COVID data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationModel-based clusteringes
dc.subject.classificationMixture modelinges
dc.subject.classificationConstraintses
dc.titleConstrained parsimonious model-based clusteringes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Authorses
dc.identifier.doi10.1007/s11222-021-10061-3es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11222-021-10061-3es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleStatistics and Computinges
dc.identifier.publicationvolume32es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad (grant MTM2017-86061-C2-1-P)es
dc.description.projectJunta de Castilla y León - FEDER (grants VA005P17 and VA002G18)es
dc.description.projectCRoNoS COST y el proyecto “Estadísticas para la detección de fraudes, con aplicaciones para datos comerciales y estados financieros ”de la Universidad de Parma (grant IC1408)es
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
dc.identifier.essn1573-1375es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem