Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez de Paz, Pedro José 
dc.contributor.authorAragón Camino, Marta
dc.contributor.authorGómez Sánchez, Esther 
dc.contributor.authorLorenzo López, Mario 
dc.contributor.authorGómez Pesquera, Estefanía 
dc.contributor.authorLópez Herrero, Rocio
dc.contributor.authorSánchez Quirós, Belén
dc.contributor.authorVarga Martínez, Olga de la
dc.contributor.authorTamayo Velasco, Álvaro
dc.contributor.authorOrtega Loubon, Christian Joseph
dc.contributor.authorGarcía Morán, Emilio
dc.contributor.authorGonzalo Benito, Hugo
dc.contributor.authorHeredia Rodríguez, María 
dc.contributor.authorTamayo Gómez, Eduardo 
dc.date.accessioned2022-03-09T13:21:33Z
dc.date.available2022-03-09T13:21:33Z
dc.date.issued2020
dc.identifier.citationJournal of Clinical Medicine, 2020, vol. 9, n. 5, 1276es
dc.identifier.issn2077-0383es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/52333
dc.descriptionProducción Científicaes
dc.description.abstractNowadays, mortality rates in intensive care units are the highest of all hospital units. However, there is not a reliable prognostic system to predict the likelihood of death in patients with postsurgical shock. Thus, the aim of the present work is to obtain a gene expression signature to distinguish the low and high risk of death in postsurgical shock patients. In this sense, mRNA levels were evaluated by microarray on a discovery cohort to select the most differentially expressed genes between surviving and non-surviving groups 30 days after the operation. Selected genes were evaluated by quantitative real-time polymerase chain reaction (qPCR) in a validation cohort to validate the reliability of data. A receiver-operating characteristic analysis with the area under the curve was performed to quantify the sensitivity and specificity for gene expression levels, which were compared with predictions by established risk scales, such as acute physiology and chronic health evaluation (APACHE) and sequential organ failure assessment (SOFA). IL1R2, CD177, RETN, and OLFM4 genes were upregulated in the non-surviving group of the discovery cohort, and their predictive power was confirmed in the validation cohort. This work offers new biomarkers based on transcriptional patterns to classify the postsurgical shock patients according to low and high risk of death. The results present more accuracy than other mortality risk scores.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationMortalityes
dc.subject.classificationMortalidades
dc.subject.classificationPostsurgical shockes
dc.subject.classificationShock posquirúrgicoes
dc.subject.classificationSepsises
dc.subject.classificationBiomarkerses
dc.subject.classificationBiomarcadoreses
dc.titleGene Expression Patterns Distinguish Mortality Risk in Patients with Postsurgical Shockes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/jcm9051276es
dc.relation.publisherversionhttps://www.mdpi.com/2077-0383/9/5/1276es
dc.peerreviewedSIes
dc.description.projectInstituto de Salud Carlos III (grant PI15/01451)es
dc.description.projectJunta de Castilla y León (grant 1255/A/16)es
dc.description.projectUniversidad de Valladolid - Fondo Europeo de Desarrollo Regional (grant VA321P18)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem