Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Rodríguez, Luis A.
dc.contributor.authorQuintano Pastor, María del Carmen 
dc.contributor.authorMarcos Porras, Elena María
dc.contributor.authorSuarez Seoane, Susana
dc.contributor.authorCalvo, Leonor
dc.contributor.authorFernández Manso, Alfonso
dc.date.accessioned2022-03-09T13:36:24Z
dc.date.available2022-03-09T13:36:24Z
dc.date.issued2020
dc.identifier.citationRemote Sensing, 2020, vol. 12, n. 8, 1295es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/52336
dc.descriptionProducción Científicaes
dc.description.abstractPrescribed fires have been applied in many countries as a useful management tool to prevent large forest fires. Knowledge on burn severity is of great interest for predicting post-fire evolution in such burned areas and, therefore, for evaluating the efficacy of this type of action. In this research work, the severity of two prescribed fires that occurred in “La Sierra de Uría” (Asturias, Spain) in October 2017, was evaluated. An Unmanned Aerial Vehicle (UAV) with a Parrot SEQUOIA multispectral camera on board was used to obtain post-fire surface reflectance images on the green (550 nm), red (660 nm), red edge (735 nm), and near-infrared (790 nm) bands at high spatial resolution (GSD 20 cm). Additionally, 153 field plots were established to estimate soil and vegetation burn severity. Severity patterns were explored using Probabilistic Neural Networks algorithms (PNN) based on field data and UAV image-derived products. PNN classified 84.3% of vegetation and 77.8% of soil burn severity levels (overall accuracy) correctly. Future research needs to be carried out to validate the efficacy of this type of action in other ecosystems under different climatic conditions and fire regimes.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationUnmanned aerial vehicleses
dc.subject.classificationVehículos aéreos no tripuladoses
dc.titleEvaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs) Imagery and Machine Learning Algorithmses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/rs12081295es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/12/8/1295es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AGL2017-86075-C2-1-R)es
dc.description.projectJunta de Castilla y León (project LE001P17)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem