Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Sastre, Luis Fernando
dc.contributor.authorCasterad, María Auxiliadora
dc.contributor.authorGuillén, Mónica
dc.contributor.authorRuiz Potosme, Norlan Miguel
dc.contributor.authorAlte da Veiga, Nuno M. S.
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.contributor.authorMartín Ramos, Pablo
dc.date.accessioned2022-03-22T12:31:33Z
dc.date.available2022-03-22T12:31:33Z
dc.date.issued2020
dc.identifier.citationAgriEngineering, 2020, vol. 2, n. 2, p. 206-212es
dc.identifier.issn2624-7402es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/52579
dc.descriptionProducción Científicaes
dc.description.abstractUnmanned Aerial Vehicles (UAVs) offer excellent survey capabilities at low cost to provide farmers with information about the type and distribution of weeds in their fields. In this study, the problem of detecting the infestation of a typical weed (charlock mustard) in an alfalfa crop has been addressed using conventional digital cameras installed on a lightweight UAV to compare RGB-based indices with the widely used Normalized Difference Vegetation Index (NDVI) index. The simple (R−B)/(R+B) and (R−B)/(R+B+G) vegetation indices allowed one to easily discern the yellow weed from the green crop. Moreover, they avoided the potential confusion of weeds with soil observed for the NDVI index. The small overestimation detected in the weed identification when the RGB indices were used could be easily reduced by using them in conjunction with NDVI. The proposed methodology may be used in the generation of weed cover maps for alfalfa, which may then be translated into site-specific herbicide treatment maps.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationPrecision agriculturees
dc.subject.classificationAgricultura de precisiónes
dc.subject.classificationSinapis arvensises
dc.subject.classificationUnmanned aerial vehicleses
dc.subject.classificationVehículos aéreos no tripuladoses
dc.titleUAV Detection of sinapis arvensis infestation in alfalfa plots using simple vegetation indices from conventional digital camerases
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/agriengineering2020012es
dc.relation.publisherversionhttps://www.mdpi.com/2624-7402/2/2/12es
dc.peerreviewedSIes
dc.description.projectUnión Europea (project LIFE11 ENV/ES/000535)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem