Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Martín, Manuel
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.date.accessioned2022-07-26T10:35:32Z
dc.date.available2022-07-26T10:35:32Z
dc.date.issued2020
dc.identifier.citationFuture Generation Computer Systems Volume 105, 2020, Pages 331-345es
dc.identifier.issn0167-739Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54259
dc.descriptionProducción Científicaes
dc.description.abstractNetwork traffic classification is an important task for any current data network. There any many possible classification targets for the traffic, but we have considered as especially important the activity state of a connection and the identification of elephant flows (few connections carrying most of the traffic). With these detection targets, this work presents a modification of the gaNet architecture for classification. gaNet is an additive network model formed by ‘learning blocks’ that are stacked iteratively following the principles of boosting models. The original gaNet model is intended for regression, being the purpose of this work to show that it can be extended to classification under several adaptations. The resulting architecture is a generic additive network applicable to any supervised classification problem (gaNet-C). To obtain experimental results, the model is applied to a type-of-traffic forecast problem using real IoT traffic from a mobile operator. The paper presents a comprehensive comparison of results between the proposed new model and many alternative algorithms in terms of classification and performance metrics. The proposed classifier can perform a k-step ahead detection forecast based exclusively on a limited time-series of previous values for each network connection. The results include two very different challenges: detection forecast of active connections and elephant flows; showing that, in both cases, the proposed algorithm presents state of the art results.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationNeural networkes
dc.subject.classificationRed neuronales
dc.subject.classificationGradient boostinges
dc.subject.classificationAumento de gradientees
dc.titleIoT type-of-traffic forecasting method based on gradient boosting neural networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 Elsevieres
dc.identifier.doi10.1016/j.future.2019.12.013es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0167739X19322319?via%3Dihubes
dc.identifier.publicationfirstpage331es
dc.identifier.publicationlastpage345es
dc.identifier.publicationtitleFuture Generation Computer Systemses
dc.identifier.publicationvolume105es
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem