Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera Montano, Isabel
dc.contributor.authorGarcía Aranda, José Javier
dc.contributor.authorRamos Diaz, Juan
dc.contributor.authorMolina Cardín, Sergio
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorRodrigues, Joel J. P. C.
dc.date.accessioned2022-08-16T11:25:44Z
dc.date.available2022-08-16T11:25:44Z
dc.date.issued2022
dc.identifier.citationCluster Computing, 2022.es
dc.identifier.issn1386-7857es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54391
dc.descriptionProducción Científicaes
dc.description.abstractData leakage is a problem that companies and organizations face every day around the world. Mainly the data leak caused by the internal threat posed by authorized personnel to manipulate confidential information. The main objective of this work is to survey the literature to detect the existing techniques to protect against data leakage and to identify the methods used to address the insider threat. For this, a literature review of scientific databases was carried out in the period from 2011 to 2022, which resulted in 42 relevant papers. It was obtained that from 2017 to date, 60% of the studies found are concentrated and that 90% come from conferences and publications in journals. Significant advances were detected in protection systems against data leakage with the incorporation of new techniques and technologies, such as machine learning, blockchain, and digital rights management policies. In 40% of the relevant studies, significant interest was shown in avoiding internal threats. The most used techniques in the analyzed DLP tools were encryption and machine learning.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationData leak Protectiones
dc.subject.classificationData leak Preventiones
dc.subject.classificationDLPes
dc.subject.classificationInternal threates
dc.subject.classificationClassified Information Securityes
dc.subject.classificationDRMes
dc.titleSurvey of techniques on data leakage protection and methods to address the insider threates
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Author(s)es
dc.identifier.doi10.1007/s10586-022-03668-2es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10586-022-03668-2es
dc.identifier.publicationtitleCluster Computinges
dc.peerreviewedSIes
dc.description.projectFCT/MCTES through national funds and, where appro-priate, EU co-fnanced funds under project UIDB/50008/2020es
dc.description.projectBrazilian National Council for Scientifc and Technological De-velopment - CNPq, through grant no. 313036/2020-9es
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
dc.identifier.essn1573-7543es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem