Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera Montano, Isabel | |
dc.contributor.author | García Aranda, José Javier | |
dc.contributor.author | Ramos Diaz, Juan | |
dc.contributor.author | Molina Cardín, Sergio | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.contributor.author | Rodrigues, Joel J. P. C. | |
dc.date.accessioned | 2022-08-16T11:25:44Z | |
dc.date.available | 2022-08-16T11:25:44Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Cluster Computing, 2022. | es |
dc.identifier.issn | 1386-7857 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/54391 | |
dc.description | Producción Científica | es |
dc.description.abstract | Data leakage is a problem that companies and organizations face every day around the world. Mainly the data leak caused by the internal threat posed by authorized personnel to manipulate confidential information. The main objective of this work is to survey the literature to detect the existing techniques to protect against data leakage and to identify the methods used to address the insider threat. For this, a literature review of scientific databases was carried out in the period from 2011 to 2022, which resulted in 42 relevant papers. It was obtained that from 2017 to date, 60% of the studies found are concentrated and that 90% come from conferences and publications in journals. Significant advances were detected in protection systems against data leakage with the incorporation of new techniques and technologies, such as machine learning, blockchain, and digital rights management policies. In 40% of the relevant studies, significant interest was shown in avoiding internal threats. The most used techniques in the analyzed DLP tools were encryption and machine learning. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Data leak Protection | es |
dc.subject.classification | Data leak Prevention | es |
dc.subject.classification | DLP | es |
dc.subject.classification | Internal threat | es |
dc.subject.classification | Classified Information Security | es |
dc.subject.classification | DRM | es |
dc.title | Survey of techniques on data leakage protection and methods to address the insider threat | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Author(s) | es |
dc.identifier.doi | 10.1007/s10586-022-03668-2 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s10586-022-03668-2 | es |
dc.identifier.publicationtitle | Cluster Computing | es |
dc.peerreviewed | SI | es |
dc.description.project | FCT/MCTES through national funds and, where appro-priate, EU co-fnanced funds under project UIDB/50008/2020 | es |
dc.description.project | Brazilian National Council for Scientifc and Technological De-velopment - CNPq, through grant no. 313036/2020-9 | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | |
dc.identifier.essn | 1573-7543 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional