Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55762
Título
Condition monitoring of bearing faults using the stator current and shrinkage methods
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies, 2019, vol. 12, n. 17, 3392
Résumé
Condition monitoring of bearings is an open issue. The use of the stator current to monitor induction motors has been validated as a very advantageous and practical way to detect several types of faults. Nevertheless, for bearing faults, the use of vibrations or sound generally offers better results in the accuracy of the detection, although with some disadvantages related to the sensors used for monitoring. To improve the performance of bearing monitoring, it is proposed to take advantage of more information available in the current spectra, beyond the usually employed, incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, growing exponentially the number of fault signatures. This is especially interesting for inverter-fed motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform the fault diagnosis. To overcome this problem, and still exploit all the useful information available in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine learning to solve the overfitting issue when the problem has many more variables than examples to classify. A case study with a motor is shown to prove the validity of the proposal.
Palabras Clave
Condition monitoring
Monitoreo de condición
Machine learning
Aprendizaje automático
ISSN
1996-1073
Revisión por pares
SI
Patrocinador
CAPES (process BEX552269/2011-5)
Version del Editor
Propietario de los Derechos
© 2019 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional