Mostrar el registro sencillo del ítem

dc.contributor.authorSantos, Lidia
dc.contributor.authorCarbonaro, Nicola
dc.contributor.authorTognetti, Alessandro
dc.contributor.authorGonzález Sánchez, José Luis 
dc.contributor.authorFuente López, Eusebio de la 
dc.contributor.authorFraile Marinero, Juan Carlos 
dc.contributor.authorPérez Turiel, Javier 
dc.date.accessioned2022-11-02T13:20:38Z
dc.date.available2022-11-02T13:20:38Z
dc.date.issued2018
dc.identifier.citationTechnologies, 2018, vol. 6, n. 1, p. 8es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56663
dc.descriptionProducción Científicaes
dc.description.abstractThis paper presents a methodology for movement recognition in hand-assisted laparoscopic surgery using a textile-based sensing glove. The aim is to recognize the commands given by the surgeon’s hand inside the patient’s abdominal cavity in order to guide a collaborative robot. The glove, which incorporates piezoresistive sensors, continuously captures the degree of flexion of the surgeon’s fingers. These data are analyzed throughout the surgical operation using an algorithm that detects and recognizes some defined movements as commands for the collaborative robot. However, hand movement recognition is not an easy task, because of the high variability in the motion patterns of different people and situations. The data detected by the sensing glove are analyzed using the following methodology. First, the patterns of the different selected movements are defined. Then, the parameters of the movements for each person are extracted. The parameters concerning bending speed and execution time of the movements are modeled in a prephase, in which all of the necessary information is extracted for subsequent detection during the execution of the motion. The results obtained with 10 different volunteers show a high degree of precision and recall.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationHand-Assisted Laparoscopic Surgery (HALS)es
dc.subject.classificationSensing glovees
dc.subject.classificationCollaborative surgical robotes
dc.subject.classificationGesture recognitiones
dc.titleDynamic gesture recognition using a smart glove in hand-assisted laparoscopic surgeryes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 The Author(s)es
dc.identifier.doi10.3390/technologies6010008es
dc.relation.publisherversionhttps://www.mdpi.com/2227-7080/6/1/8es
dc.identifier.publicationfirstpage8es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleTechnologieses
dc.identifier.publicationvolume6es
dc.peerreviewedSIes
dc.description.projectThis research has been partially funded by the Spanish State Secretariat for Research, Development and Innovation, through (project DPI2013-47196-C3-3-R)es
dc.identifier.essn2227-7080es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem