Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Gutiérrez, Carlos
dc.contributor.authorSantos, Jesús Daniel
dc.contributor.authorMartínez Zarzuela, Mario 
dc.contributor.authorBasden, Alistair
dc.contributor.authorOsborn, James
dc.contributor.authorDíaz Pernas, Francisco Javier 
dc.contributor.authorCos Juez, Francisco Javier de
dc.date.accessioned2022-11-03T12:19:40Z
dc.date.available2022-11-03T12:19:40Z
dc.date.issued2017
dc.identifier.citationSensors, 2017, vol. 17, n. 6, p. 1263es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56704
dc.descriptionProducción Científicaes
dc.description.abstractMany of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationAdaptive opticses
dc.subject.classificationNeural networkses
dc.subject.classificationTomographic reconstructores
dc.subject.classificationParallel processinges
dc.titleComparative study of neural network frameworks for the next generation of adaptive optics systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2017 The Author(s)es
dc.identifier.doi10.3390/s17061263es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/17/6/1263es
dc.identifier.publicationfirstpage1263es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume17es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad through grant AYA2014-57648-Pes
dc.description.projectGobierno del Principado de Asturias (Consejería de Economía y Empleo), through grant FC-15-GRUPIN14-017es
dc.description.projectThis work is also funded by the UK Science and Technology Facilities Council, grant ST/K003569/1, and a consolidated grant ST/L00075X/1es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem