Mostrar el registro sencillo del ítem
dc.contributor.author | González Gutiérrez, Carlos | |
dc.contributor.author | Santos, Jesús Daniel | |
dc.contributor.author | Martínez Zarzuela, Mario | |
dc.contributor.author | Basden, Alistair | |
dc.contributor.author | Osborn, James | |
dc.contributor.author | Díaz Pernas, Francisco Javier | |
dc.contributor.author | Cos Juez, Francisco Javier de | |
dc.date.accessioned | 2022-11-03T12:19:40Z | |
dc.date.available | 2022-11-03T12:19:40Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Sensors, 2017, vol. 17, n. 6, p. 1263 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/56704 | |
dc.description | Producción Científica | es |
dc.description.abstract | Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Adaptive optics | es |
dc.subject.classification | Neural networks | es |
dc.subject.classification | Tomographic reconstructor | es |
dc.subject.classification | Parallel processing | es |
dc.title | Comparative study of neural network frameworks for the next generation of adaptive optics systems | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2017 The Author(s) | es |
dc.identifier.doi | 10.3390/s17061263 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/17/6/1263 | es |
dc.identifier.publicationfirstpage | 1263 | es |
dc.identifier.publicationissue | 6 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 17 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía y Competitividad through grant AYA2014-57648-P | es |
dc.description.project | Gobierno del Principado de Asturias (Consejería de Economía y Empleo), through grant FC-15-GRUPIN14-017 | es |
dc.description.project | This work is also funded by the UK Science and Technology Facilities Council, grant ST/K003569/1, and a consolidated grant ST/L00075X/1 | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional