Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorBaladrón García, Carlos 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorCalavia, Lorena
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorPérez, Francisco
dc.contributor.authorFernández, Ángel
dc.contributor.authorLloret, Jaime
dc.date.accessioned2022-11-09T13:02:28Z
dc.date.available2022-11-09T13:02:28Z
dc.date.issued2014
dc.identifier.citationEnergies, 2014, vol. 7, n. 3, p. 1576-1598es
dc.identifier.issn1996-1073es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56883
dc.descriptionProducción Científicaes
dc.description.abstractThe new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG) is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF) in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.subject.classificationMicrogrides
dc.subject.classificationShort-term electric load forecastinges
dc.subject.classificationMulti-layer perceptrones
dc.subject.classificationArtificial neural networkes
dc.subject.classificationNeural networkses
dc.titleArtificial neural network for short-term load forecasting in distribution systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2014 The Author(s)es
dc.identifier.doi10.3390/en7031576es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/7/3/1576es
dc.identifier.publicationfirstpage1576es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage1598es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume7es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad, convenio INNPACTO - proyecto MIRED-CON (IPT-2012-0611-120000)es
dc.identifier.essn1996-1073es
dc.rightsAttribution 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem