Mostrar el registro sencillo del ítem

dc.contributor.authorBarrio Tellado, Eustasio del 
dc.contributor.authorInouzhe Valdés, Hristo 
dc.contributor.authorLoubes, Jean-Michel
dc.date.accessioned2022-11-14T11:47:16Z
dc.date.available2022-11-14T11:47:16Z
dc.date.issued2022
dc.identifier.citationAdvances in Data Analysis and Classification, 2022,es
dc.identifier.issn1862-5347es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57040
dc.descriptionProducción Científicaes
dc.description.abstractWe consider the problem of diversity enhancing clustering, i.e, developing clustering methods which produce clusters that favour diversity with respect to a set of pro- tected attributes such as race, sex, age, etc. In the context of fair clustering, diversity plays a major role when fairness is understood as demographic parity. To promote diversity, we introduce perturbations to the distance in the unprotected attributes that account for protected attributes in a way that resembles attraction-repulsion of charged particles in Physics. These perturbations are defined through dissimilarities with a tractable interpretation. Cluster analysis based on attraction-repulsion dissimilarities penalizes homogeneity of the clusters with respect to the protected attributes and leads to an improvement in diversity. An advantage of our approach, which falls into a pre- processing set-up, is its compatibility with a wide variety of clustering methods and whit non-Euclidean data. We illustrate the use of our procedures with both synthetic and real data and provide discussion about the relation between diversity, fairness, and cluster structure.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationDiversity enhancing clusteringes
dc.subject.classificationDemographic parityes
dc.subject.classificationFair clusteringes
dc.subject.classificationHierarchical clusteringes
dc.subject.classificationKernel methodses
dc.subject.classificationMultidimensional scalinges
dc.titleAttraction-repulsion clustering: a way of promoting diversity linked to demographic parity in fair clusteringes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Author(s)es
dc.identifier.doi10.1007/s11634-022-00516-4es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11634-022-00516-4es
dc.identifier.publicationtitleAdvances in Data Analysis and Classificationes
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competencia and FEDER, (grant MTM2017-86061-C2-1-P)es
dc.description.projectJunta de Castilla y León, (grants VA005P17 and VA002G18)es
dc.description.projectGobierno País Vasco a través del programa BERC 2018-2021es
dc.description.projectMinisterio de Ciencia, Innovación, y Universidades (acreditación BCAM Severo Ochoa SEV-2017-0718)es
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.identifier.essn1862-5355es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem