Mostrar el registro sencillo del ítem
dc.contributor.author | Barrio Tellado, Eustasio del | |
dc.contributor.author | Inouzhe Valdés, Hristo | |
dc.contributor.author | Loubes, Jean-Michel | |
dc.date.accessioned | 2022-11-14T11:47:16Z | |
dc.date.available | 2022-11-14T11:47:16Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Advances in Data Analysis and Classification, 2022, | es |
dc.identifier.issn | 1862-5347 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/57040 | |
dc.description | Producción Científica | es |
dc.description.abstract | We consider the problem of diversity enhancing clustering, i.e, developing clustering methods which produce clusters that favour diversity with respect to a set of pro- tected attributes such as race, sex, age, etc. In the context of fair clustering, diversity plays a major role when fairness is understood as demographic parity. To promote diversity, we introduce perturbations to the distance in the unprotected attributes that account for protected attributes in a way that resembles attraction-repulsion of charged particles in Physics. These perturbations are defined through dissimilarities with a tractable interpretation. Cluster analysis based on attraction-repulsion dissimilarities penalizes homogeneity of the clusters with respect to the protected attributes and leads to an improvement in diversity. An advantage of our approach, which falls into a pre- processing set-up, is its compatibility with a wide variety of clustering methods and whit non-Euclidean data. We illustrate the use of our procedures with both synthetic and real data and provide discussion about the relation between diversity, fairness, and cluster structure. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Diversity enhancing clustering | es |
dc.subject.classification | Demographic parity | es |
dc.subject.classification | Fair clustering | es |
dc.subject.classification | Hierarchical clustering | es |
dc.subject.classification | Kernel methods | es |
dc.subject.classification | Multidimensional scaling | es |
dc.title | Attraction-repulsion clustering: a way of promoting diversity linked to demographic parity in fair clustering | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Author(s) | es |
dc.identifier.doi | 10.1007/s11634-022-00516-4 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11634-022-00516-4 | es |
dc.identifier.publicationtitle | Advances in Data Analysis and Classification | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía y Competencia and FEDER, (grant MTM2017-86061-C2-1-P) | es |
dc.description.project | Junta de Castilla y León, (grants VA005P17 and VA002G18) | es |
dc.description.project | Gobierno País Vasco a través del programa BERC 2018-2021 | es |
dc.description.project | Ministerio de Ciencia, Innovación, y Universidades (acreditación BCAM Severo Ochoa SEV-2017-0718) | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.identifier.essn | 1862-5355 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional