Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57644
Título
Classification and clustering of electricity demand patterns in industrial parks
Autor
Año del Documento
2012
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies, 2012, vol. 5, n. 12, p. 5215-5228
Resumen
Understanding of energy consumption patterns is extremely important for
optimization of resources and application of green trends. Traditionally, analyses were
performed for large environments like regions and nations. However, with the advent of
Smart Grids, the study of the behavior of smaller environments has become a necessity to
allow a deeper micromanagement of the energy grid. This paper presents a data processing
system to analyze energy consumption patterns in industrial parks, based on the cascade
application of a Self-Organizing Map (SOM) and the clustering k-means algorithm. The
system is validated with real load data from an industrial park in Spain. The validation
results show that the system adequately finds different behavior patterns which are
meaningful, and is capable of doing so without supervision, and without any prior
knowledge about the data.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Industrial park
Pattern recognition
Self-organizing map
k-means
Clustering
Energy demand
ISSN
1996-1073
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2012 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution 3.0 Unported