Mostrar el registro sencillo del ítem
dc.contributor.author | Baladrón García, Carlos | |
dc.contributor.author | Aguiar Pérez, Javier Manuel | |
dc.contributor.author | Calavia, Lorena | |
dc.contributor.author | Carro Martínez, Belén | |
dc.contributor.author | Sánchez Esguevillas, Antonio Javier | |
dc.contributor.author | Hernández Callejo, Luis | |
dc.date.accessioned | 2022-12-02T12:30:11Z | |
dc.date.available | 2022-12-02T12:30:11Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Sensors, 2012, vol. 12, n. 2, p. 1468-1481 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/57649 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper presents a proposal for an Artificial Neural Network (ANN)-based architecture for completion and prediction of data retrieved by underwater sensors. Due to the specific conditions under which these sensors operate, it is not uncommon for them to fail, and maintenance operations are difficult and costly. Therefore, completion and prediction of the missing data can greatly improve the quality of the underwater datasets. A performance study using real data is presented to validate the approach, concluding that the proposed architecture is able to provide very low errors. The numbers show as well that the solution is especially suitable for cases where large portions of data are missing, while in situations where the missing values are isolated the improvement over other simple interpolation methods is limited. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | * |
dc.subject.classification | Artificial intelligence | es |
dc.subject.classification | Artificial Neural Networks (ANN) | es |
dc.subject.classification | Data completion | es |
dc.subject.classification | Data prediction | es |
dc.subject.classification | Underwater sensors | es |
dc.title | Performance study of the application of artificial neural networks to the completion and prediction of data retrieved by underwater sensors | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2012 The Author(s) | es |
dc.identifier.doi | 10.3390/s120201468 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/12/2/1468 | es |
dc.identifier.publicationfirstpage | 1468 | es |
dc.identifier.publicationissue | 2 | es |
dc.identifier.publicationlastpage | 1481 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 12 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Attribution 3.0 Unported | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution 3.0 Unported