Mostrar el registro sencillo del ítem

dc.contributor.authorTapiador, Francisco Javier
dc.contributor.authorMarcos, Cecilia
dc.contributor.authorNavarro, Andrés
dc.contributor.authorJiménez Alcázar, Alfonso
dc.contributor.authorMoreno Galdón, Raúl
dc.contributor.authorSanz Justo, María Julia 
dc.date.accessioned2022-12-22T10:45:09Z
dc.date.available2022-12-22T10:45:09Z
dc.date.issued2018
dc.identifier.citationRemote Sensing, 2018, vol. 10, n. 5, p. 752es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57903
dc.descriptionProducción Científicaes
dc.description.abstractPrecise estimates of precipitation are required for many environmental tasks, including water resources management, improvement of numerical model outputs, nowcasting and evaluation of anthropogenic impacts on global climate. Nonetheless, the availability of such estimates is hindered by technical limitations. Rain gauge and ground radar measurements are limited to land, and the retrieval of quantitative precipitation estimates from satellite has several problems including the indirectness of infrared-based geostationary estimates, and the low orbit of those microwave instruments capable of providing a more precise measurement but suffering from poor temporal sampling. To overcome such problems, data fusion methods have been devised to take advantage of synergisms between available data, but these methods also present issues and limitations. Future improvements in satellite technology are likely to follow two strategies. One is to develop geostationary millimeter-submillimeter wave soundings, and the other is to deploy a constellation of improved polar microwave sensors. Here, we compare both strategies using a simulated precipitation field. Our results show that spatial correlation and RMSE would be little affected at the monthly scale in the constellation, but that the precise location of the maximum of precipitation could be compromised; depending on the application, this may be an issue.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationPrecipitationes
dc.subject.classificationGeostationary microwave sensorses
dc.subject.classificationPolar systemses
dc.titleDecorrelation of satellite precipitation estimates in space and timees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 The Author(s)es
dc.identifier.doi10.3390/rs10050752es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/10/5/752es
dc.identifier.publicationfirstpage752es
dc.identifier.publicationissue5es
dc.identifier.publicationtitleRemote Sensinges
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad, Ciencia e Innovación (projects CGL2013-48367-P, CGL2016-80609-R)es
dc.identifier.essn2072-4292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes
dc.subject.unesco2213 Termodinámicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem