dc.contributor.advisor | Barrio Tellado, Eustasio del | es |
dc.contributor.author | Martín de Diego, Elena | |
dc.contributor.editor | Universidad de Valladolid. Facultad de Ciencias | es |
dc.date.accessioned | 2023-01-13T08:14:01Z | |
dc.date.available | 2023-01-13T08:14:01Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/58225 | |
dc.description.abstract | Artificial neural networks are a class of machine learning algorithms involved in many of the most
spectacular applications in Artificial Intelligence. Deep neural networks or multilayer networks
produce the best empirical results in the classification of images or texts. From a theoretical point
of view, understanding the reasons for the success of these algorithms is still a pending issue. In
addition to the convergence problems of the learning algorithms, the enormous overparameterization
of many types of neural networks makes, perhaps, very likely that the classification rules obtained
following this method suffer from overfitting. The goal of this project is to study the design of
neural networks adapted to image analysis, without abundant parametrization, but oriented to
take advantage of the special structure of this type of data. The gain of this approach in terms of
control of the overfit will be studied and applied to the classification of some appropriate image
dataset. | es |
dc.description.sponsorship | Departamento de Estadística e Investigación Operativa | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Aprendizaje automático | es |
dc.subject.classification | Aprendizaje profundo | es |
dc.subject.classification | Redes neuronales artificiales | es |
dc.title | Redes neuronales convolucionales | es |
dc.type | info:eu-repo/semantics/bachelorThesis | es |
dc.description.degree | Grado en Matemáticas | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |