Show simple item record

dc.contributor.advisorBarrio Tellado, Eustasio del es
dc.contributor.authorMartín de Diego, Elena
dc.contributor.editorUniversidad de Valladolid. Facultad de Ciencias es
dc.date.accessioned2023-01-13T08:14:01Z
dc.date.available2023-01-13T08:14:01Z
dc.date.issued2022
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/58225
dc.description.abstractArtificial neural networks are a class of machine learning algorithms involved in many of the most spectacular applications in Artificial Intelligence. Deep neural networks or multilayer networks produce the best empirical results in the classification of images or texts. From a theoretical point of view, understanding the reasons for the success of these algorithms is still a pending issue. In addition to the convergence problems of the learning algorithms, the enormous overparameterization of many types of neural networks makes, perhaps, very likely that the classification rules obtained following this method suffer from overfitting. The goal of this project is to study the design of neural networks adapted to image analysis, without abundant parametrization, but oriented to take advantage of the special structure of this type of data. The gain of this approach in terms of control of the overfit will be studied and applied to the classification of some appropriate image dataset.es
dc.description.sponsorshipDepartamento de Estadística e Investigación Operativaes
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAprendizaje automáticoes
dc.subject.classificationAprendizaje profundoes
dc.subject.classificationRedes neuronales artificialeses
dc.titleRedes neuronales convolucionaleses
dc.typeinfo:eu-repo/semantics/bachelorThesises
dc.description.degreeGrado en Matemáticases
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record